A coupled Timoshenko model for smart slender structures
نویسندگان
چکیده
منابع مشابه
investigating the feasibility of a proposed model for geometric design of deployable arch structures
deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...
Multivariable Control of Smart Timoshenko Beam Structures Using POF Technique
Active Vibration Control (AVC) is an important problem in structures. One of the ways to tackle this problem is to make the structure smart, adaptive and self-controlling. The objective of active vibration control is to reduce the vibration of a system by automatic modification of the system’s structural response. This paper features the modeling and design of a Periodic Output Feedback (POF) c...
متن کاملA Stochastic Operational Planning Model for Smart Power Systems
Smart Grids are result of utilizing novel technologies such as distributed energy resources, and communication technologies in power system to compensate some of its defects. Various power resources provide some benefits for operation domain however, power system operator should use a powerful methodology to manage them. Renewable resources and load add uncertainty to the problem. So, independe...
متن کاملBackstepping Boundary Controller and Observer Designs for the Slender Timoshenko Beam
In this paper we present the first extension of the backstepping methods developed for control of parabolic PDEs (modeling thermal, fluid, and chemical reaction dynamics, including Navier-Stokes equations and turbulence) to secondorder PDE systems (often referred loosely as hyperbolic) which model flexible structures and acoustic. We introduce controller and observer designs capable of adding d...
متن کاملA method for normal-mode-based model reduction in nonlinear dynamics of slender structures
This paper introduces a nonlinear reduced-order modelling methodology for finite-element models of structures with slender subcomponents and inertia represented by lumped masses along main load paths. The constructed models have dynamics described by 1-D intrinsic equations of motion, which are further written in modal co-ordinates. This yields finite-dimensional approximations of the system dy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Solids and Structures
سال: 2009
ISSN: 0020-7683
DOI: 10.1016/j.ijsolstr.2009.01.029